Я вернулся, раз тут клондайка такой упертый=)) t + d -> 4 He + n + 17,6 МэВ - n не распространится на большую территорию. и спроси у ОБЖшника в школе как долго вредна термо-ядерная бомба. У меня знакомый военный. Он сам подтвердил что они через пол-года безвредны. Щас на память весь механизм не выложу канешь. давно это было. В 50-мегатонном заряде 97% мощности было обусловлено термоядерной энергией, т. е. заряд отличался высокой "чистотой" и соответственно минимумом образования осколков деления, создающих неблагоприятный радиационный фон в атмосфере. Благодаря этому американские коллеги поняли, что ученых заботит сведение к минимуму радиационных последствий испытаний собственного ядерного оружия и тем самым сокращение радиационного воздействия на живущие и будущие поколения. После взрыва советской сверхбомбы американские специалисты сразу отметили и оценили достоинства ее конструкции. По словам известного ученого-атомщика Ральфа Лэппа, в США считалось, что советский "взрыв на высоте всего 4000 метров вызовет весьма значительное выпадение радиоактивных осадков. Но русские удивили западных экспертов. Когда ученые Соединенных Штатов произвели анализ проб продуктов взрыва этой бомбы (отбор проб производился самолетом на большой высоте), они установили: 1) бомба была заключена в свинцовую оболочку; 2) менее 2 процентов энергии взрыва приходилось на реакцию деления, а остальная энергия - на реакцию синтеза. Следовательно, это была чрезвычайно "чистая" бомба, взрыв которой вызвал относительно слабое выпадение радиоактивных осадков... Советские испытания продемонстрировали то, что специалисты-атомщики Соединенных Штатов ясно представляли себе: термоядерная бомба - оружие, усовершенствование которого имеет большие перспективы, то есть можно создать термоядерную бомбу любых размеров и при сравнительно небольших дополнительных затратах". Физики военные не идиоты. А вот и нейтронная: Как работает нейтронная бомба Целью создания нейтронного оружия в 60-х - 70-х годах являлось получение тактической боеголовки, главным поражающим фактором в котором являлся бы поток быстрых нейтронов, излучаемых из области взрыва. Для уменьшения сопутствующих разрушений в нейтронной бомбе принимаются меры для уменьшения выхода энергии способами, отличными от нейтронного излучения. Радиус зоны смертельного уровня нейтронного облучения в таких зарядах может даже превосходить радиусы поражения ударной волной или световым излучением. Создание такого оружия обусловила низкая эффективность обычных тактических ядерных зарядов против бронированных целей, таких как танки, бронемашины и т. п. Благодаря наличию бронированного корпуса и системы фильтрации воздуха бронетехника способна противостоять всем поражающим факторам ЯВ: ударная волна, световое излучение, проникающая радиация, радиоактивное заражение местности и может эффективно решать боевые задачи даже в относительно близких к эпицентру районах. Кроме того, для создаваемой в то время системы ПРО с ядерными боевыми частями у противоракет было бы так же неэффективно использовать обычные ядерные заряды. В условиях взрыва в верхних слоях атмосферы (десятки км) воздушная ударная волна практически отсутствует, а испускаемое зарядом мягкое рентгеновское излучение может интенсивно поглощаться оболочкой боеголовки. Поток нейтронов же с легкостью проходит даже через толстую стальную броню. При мощности в 1 кт смертельная доза облучения в 8000 рад, которая ведет к немедленной и быстрой смерти (минуты), будет получена экипажем танка Т-72 на расстоянии в 700 м. При обычном атомном взрыве этой же мощности аналогичное расстояние будет равняться 360 м. Опасный для жизни уровень в 600 рад достигается на дистанции 1100 м и 700 м соответственно для бронированных целей и 1350 и 900 м для незащищенных людей. Дополнительно, нейтроны создают в конструкционных материалах (например броне танка) наведенную радиоактивность. Она может быть довольно сильной: скажем, если в рассмотренный выше Т-72 сядет новый экипаж, то он получит летальную дозу в течении 24 часов. Новые виды брони более эффективно защищают танк от нейтронного потока. Для этого в ее состав входит пластик с долей бора, хорошего поглотителя нейтронов. Броня танка M-1 "Abrams" содержит для этих целей обедненный уран (уран, с выделенными изотопами U235 и U234). Броня специально может быть обеднена элементами, дающими сильную наведенную радиоактивность. Из-за очень сильного поглощения и рассеивания нейтронного излучения в атмосфере делать мощные заряды с увеличенным выходом излучения нецелесообразно. Максимальная мощность боеголовок составляет ~1 кт. Хотя о нейтронных бомбах и говорят, что они оставляют материальные ценности неразрушенными, это не совсем так. В пределах радиуса нейтронного поражения (около 1 километра) ударная волна может уничтожить или сильно повредить большинство зданий. Сильные потоки высокоэнергетических нейтронов возникают в ходе термоядерных реакций, например, горения дейтерий-тритиевой плазмы: D + T -> He4 (3.5 MeV) + n (14.1 MeV). При этом нейтроны не должны поглощаться материалами бомбы и, что особо важно, необходимо предотвратить их захват атомами делящегося материала. Для примера можно рассмотреть боеголовку W-70-mod-0, с максимальным энерговыходом 1 кт, из которых 75% образуется за счет реакций синтеза, 25% - деления. Такое отношение (3:1) говорит о том, что на одну реакцию деления (~ 180 MeV) приходится до 31 реакции синтеза (~ 540 MeV) D+T. Это подразумевает беспрепятственный выход более 97% нейтронов синтеза, т.е. без их взаимодействия с ураном пускового заряда. Поэтому синтез должен происходить в физически отделенной от первичного заряда капсуле. Наблюдения показывают, что при температуре, развиваемой 250-тонным взрывом и нормальной плотности (сжатый газ или соединение с литием) даже дейтериево- тритиевая смесь не будет гореть с высоким КПД. Термоядерное горючие должно быть предварительно сжато раз в 10 по каждому из измерений, чтобы реакция прошла достаточно быстро. Таким образом, можно прийти к выводу, что заряд с увеличенным выходом излучения представляет собой разновидность схемы радиационной имплозии. В отличии от классических термоядерных зарядов, где в качестве термоядерного топлива находится дейтерид лития, вышеприведенная реакция имеет свои преимущества. Во-первых, несмотря на дороговизну и нетехнологичность трития эту реакция легко поджечь. Во-вторых, большинство энергии, 80% - выходит в виде высокоэнергетических нейтронов 14.1 MeV, и только 20% - в виде тепла и гама- и рентгеновского излучения. Из особенностей конструкции стоит отметить отсутствие плутониевого запального стержня. Из-за малого количества термоядерного топлива и низкой температуры начала реакции необходимость в нем отсутствует. Весьма вероятно, что зажигание реакции происходит в центре капсулы, где в результате схождения ударной волны развивается высокое давление и температура. Общее количество делящихся материалов для 1-кт нейтронной бомбы где-то 10 кг. 750-тонный энергетический выход синтеза означает наличие 10 граммов дейтерий-тритиевой смеси. Газ можно сжать до плотности 0.25 г/см3, т.о. объем капсулы будет около 40 см3, это шарик 5-6 см в диаметре. На основе материалов The High Energy Weapons Archive Это совершенно разные вещи.И всю планету ими н покрыть для такого количества радиации. Добавлено спустя 6 минут 23 секунды: Dark TemplarТы чето не силен в физике. у тя какой ФАКУЛЬТЕТ? и НИ ХРЕНА Я НЕ ПОЗОРЮ. В доказательство - почитайте спойлеры.